
Wall-E Robot Final Report

Johnathon Schultz Peter Clain Jesse Miner

INTRODUCTION

Overview
Robots have always been an object of fascination in our so-
ciety. They have been portrayed as humble servants of man
as well as evil creations that rise to overthrow their masters.
But where does this fascination come from? All robots share
one thing in common at the root of their design and purpose
- they can perform tasks in place of humans. Life is filled
with many repetitive tasks, and if robots are able to perform
those tasks, they can help to ease an overarching burden.

With that said, robots are optimal replacements for humans
in a multitude of scenarios. As simple as it may seem, the
primary action in many repetitive tasks is picking up ob-
jects and moving them to other locations. Be it picking up
garbage from the floor, moving parts along an assembly line,
or removing fallen debris, robots that can pick up and move
objects will always be useful.

Project Description
With an optimistic attitude toward robots in mind, our group
decided to create a robot that could do just this - pick up and
collect objects. While the goals of our project were not as
advanced as some of the aforementioned examples, we had
hoped that our project would expand upon the ever-growing
nature of robot servants.

Our robot was designed as a fetching robot. It was to come
with a set of objects that it was designed to detect, and it
would be able to collect these items from the environment
(when they were placed at random). Using an arm mecha-
nism to lift the objects from the floor, it could then place the
objects in a container on its back.

The behavior of the robot was to be very similar to that of
a dog playing fetch, with the key difference being its ability
to fetch and carry multiple objects. Like a robot that collects
garbage or debris, the robot would be predisposed to collect
objects of a certain type. Within this type, the range of object
attributes would be very narrow. If the object were a yellow
ball, for example, the robot would only collect objects with
the ball’s predetermined size and color. The characteristics
of the objects would depend on what could be detected reli-
ably using the available sensors.

This limitation served to keep the project within the scope
of the class. While we did need to include components not
provided by the instructor, such as a camera, we had hoped to

make the design of this robot simple yet elegant. The specific
design goals we hoped to accomplish were as follows:

1. The robot can detect target objects for collection

2. The robot can pick up objects successfully, and hold at
least 3 of them in its payload

3. (Optional) The robot can redistribute the objects randomly
and begin searching for them again. Conversely, it could
also approach the nearest human when it has collected 3
objects.

RELATED WORK
Three systems were found that had several design goals in
common with our robot. They all had mechanisms to move
around, find certain objects, and pick them up.

First, the movie Wall-E was an inspiration for this project. In
the beginning of the movie, Wall-E goes around collecting
interesting objects from the garbage. Although our robots
personality was not intended to be quite so developed, the
basic function is the same.

Another robot was found on the web that is very similar to
our idea [1]. It comes with a few barrels and is able to collect
them in the container on its back. It uses a laser sensor to
detect the barrels, which are covered in reflective tape. It
then grabs the barrels and lifts them onto its back with the
large arm on the front (Figure 1).

Figure 1. Barell Collector Robot

Collector Robots like ours have been designed as useful tools
as well as toys [3]. For example, another Lego robot was
found online that cleans up garbage. It uses two conveyor

1



belts positioned at an angle to pick up objects. This method
requires less precision than a grabber arm, but it may not
provide enough grip for all possible objects. The garbage
collection robot uses an ultrasonic sensor to find the nearest
object and a light sensor to determine its color.

In designing our robot, these related systems were consid-
ered in the implementation of movement, object detection,
and retrieval. Specifically, we envisioned our robots behav-
ior to be something like the following:

1. Rotate while scanning the environment until it finds an
object or it turns a full 360 degrees.

2. If an object is found, go to it, pick it up, and repeat cycle.
If no object is found, either redistribute objects, go to the
nearest person (wed need a way to see people), or simply
turn off.

We noted that LEGOs were a popular building tool, and us-
ing them was one possibility for our project. We also found
some less useful, but still mentionable related works at [6, 4,
5].

OVERALL DESIGN
Our robot had 4 main features to be designed. They were:
one, a drive train to move our robot; two, a mechanism for
lifting the objects off of the floor and into the container;
three, a hopper for storing objects retrieved from the floor;
and four, a camera for identifying objects to be picked up.
These features then needed to be controlled using the Ar-
duino microcontroller.

Over the course of development, our robot went through two
main iterations of design. In each iteration, the key fea-
tures were cut out of acrylic using the laser cutter. They
were placed on the body of the robot, which was designed
to hold the breadboard, the hopper, and any additional elec-
trical components (servos, motors, etc.). Using a flat surface
as the body, the features were arranged as follows:

• Movement: Motors and wheels were placed in the rear,
underneath the chassis

• Mechanism: Attached to a servo that was mounted inside
the hopper through a hole

• Hopper: Attached on top of the chassis in the rear

• Range-finder: Attached to the arm in a position to see
balls that entered the forlift

• Camera: Attached to the top-front of the hopper

Both the protoype and the final version of the robot can be
seen in Figure 2 and Figure 3 respectively.

Prototype
The first prototype of our robot made good progress towards
our final vision. We assembled the body, hopper, and two
arms out of laser-cut acrylic and tape. The body was a flat
piece long enough to hold the breadboard on the front and

Figure 2. Initial Prototype

Figure 3. Final Prototype

the hopper on the back. The hopper was just a box with
an open top so the ping pong balls could fall inside. We
mounted two wheels controlled by motors on the back of the
robot, underneath the hopper, and a track ball on the under-
side of the very front of the body.

The robot’s two arms were each connected by screws to a
servo. The servos were taped to the sides of the hopper, one
on the right side and one on the left. The fork arm (the one
that holds a ping pong ball) was on the right. We originally
intended the left arm to have a sort of ”gate” that would come
down to prevent the ball from falling out of the fork as it was
lifted into the hopper, but we found that that was unneces-
sary. We ended up keeping the left arm because it was a
convenient place to mount the range-finder, which detects
when there is an object in the fork arm. The piece of acrylic
that was meant to be the gate was used as a lip on the hopper
to help ensure that the ping pong balls landed in the hopper.

The prototype accomplished our basic goals quite success-
fully. It was able to drive forward until it encountered a ping

2



pong ball. When the range-finder detected the ball in the
fork, the robot stopped if it was moving, lifted the fork arm
to deposit the object in the hopper, and then lowered the arm
back to ground level. The left arm never needed to move on
the prototype.

Possibly the prototype’s greatest limitation was that its wheels
could not go backwards, so the robot could not turn or go in
reverse. Thus, the ping pong ball had to be placed directly
in front of the forklift. In addition, the prototype was phys-
ically tethered to a computer due to a requirement for a 5v
power supply.

A video demoing the functionality of our initial prototype is
available here: http://www.youtube.com/watch?
v=tuc2jwOD6Ng.

Final Design
Both versions of the robot were very similar, with the fi-
nal version adding any functionality that was absent in the
prototype. The specific hardware and software decisions for
the final version are evaluated in more detail below, while a
general overview of our design is presented in Figure 4 and
a diagram of our circuitry can be found in Figure 5.

Figure 5. Robot Wiring Diagram

Hardware
The hardware portion of the robot changed visibly over the
course of our development, but the overall design remained
pretty much the same. Most of the changes were minor and

designed to fix small problems or add a small bit of extra
functionality, not completely change the capabilities of the
robot.

The first thing we did the with the final version of the robot
was to correct the three most obvious flaws in the prototype.
We incorporated an H-bridge to allow the motors to move
forward as well as backward. This gave the robot the abil-
ity to go in reverse as well as turn. The second thing we
corrected was the fact that the robot had to be tethered to
a computer in order to receive the 5v power it needed. We
fixed this by adding an additional 9v battery and hooking it
up to the raw input of the USB converter. Finally the third
problem we corrected was removing the vestigial left arm.
The range-finder was moved from the left arm to the right
arm.

Initial testing on the prototype also showed that the arm mech-
anism was a little shaky and not very stable. Due to the diffi-
culty of mounting the forklift to the arm at the proper angle,
we decided that the best way to deal with the stability issues
was to make the arm lighter and shorter as well as actually
screwing the servo into the hopper. In order to shorten the
overall chassis the hopper was modified to allow the bread-
board to partially fit inside of it. This freed up extra room
on the front of the robot and allowed us to make the entire
chassis smaller. To do this, we cut a hole in the front of the
hopper as well as another piece of acrylic to act as a floor
for the hopper. We also stored the two 9v batteries that we
were using inside the hopper, underneath this new floor we
had constructed.

Over time, we noticed a problem with the arm where it would
become misaligned with the floor. The arm would start scrap-
ing along the floor where previously it would not. When the
arm was dragging along the floor, either the motors would
be unable to turn the robot or the arm would pop off of the
servo. To fix this, we added wedges of foam to the top of the
forklift that would hit the front of the chassis as the arm came
down. This was mostly successful in stopping the arm from
going below a set minimum height. On certain terrain, such
as carpet, this still became an issue periodically. However,
this partial problem was solved by implementing a ”carpet”
setting for the motors, where they would drive with greater
force than usual.

We were also worried about accuracy with the forklift, es-
pecially considering the problems we were having with the
camera (more on this later). Thus, for the final version, we
had the arm re-cut using some scrap light-weight red acrylic
that we found. This new version of the arm had an angled
front, with the goal being to push balls inwards towards the
forklift. This worked surprisingly well, as most balls that hit
the angled rolled right in.

Software
The software side of our robot changed substantially over the
course of development. This was mostly due to the many
many problems we encountered with the camera we were
attempting to use. We initially imagined a much more com-

3

http://www.youtube.com/watch?v=tuc2jwOD6Ng
http://www.youtube.com/watch?v=tuc2jwOD6Ng


Figure 4. Robot Design Outline

plex code-base, but eventually arrived on an autonomous
mode outlined in Figure 6.

Figure 6. Software Flowchart

There are two software components to the robot. A small set
of arduino code, and a larger C# code base for the C328R
camera mounted on the robot. The C# code base was heav-
ily modified, but was originally based on code from [2]. In

general, the C# camera code retrieved an image from the
camera, looked for a given color within a certain tolerance,
and if it found the color, then it told the robot to move for-
ward. If it didn’t find the color, it told the robot to turn to the
right. If the robot turned 360 degrees (about 20 turn com-
mands) then the robot would go into reverse and try to look
for the ball for another 20 turns. This was done so that in
the unlikely event that the ball was perpetually stuck next to
the robot as it turned, it would eventually move to a position
that it was able to see the ball. If after the second 360 de-
gree turn it did not see a ball, the robot would assume that
there were no more balls to pickup and would end. A video
demoing part of this functionality is available at: http:
//www.youtube.com/watch?v=oFJHnSWJ17s.

Before this could be done however, the camera had to be
initialized. Initializing the camera was a tricky process as
the camera was a temperamental beast (more on this later).
When it worked, the camera would be initialized and then
send an image to the C# code. The C# code would then
display the image to the operator, who could then click on a
certain portion of the image in order to set that color as the
color that the code was to search for. Once this was done, the
operator merely had to hit a button that spawned a separate
thread that continuously took pictures, scanned for the color,
and sent the commands to the robot in the order detailed
above.

The messaging system between the camera code and the

4

http://www.youtube.com/watch?v=oFJHnSWJ17s
http://www.youtube.com/watch?v=oFJHnSWJ17s


robot was an incredibly simple. It consisted only of sin-
gle letter commands. There were commands for forward,
reverse, left, right, stop, and change drive mode. The fi-
nal command changed the power sent to the motors for any
given command, allowing for the robot to drive better on
carpet. The robot, upon receiving a forward or reverse com-
mand would continue to do that until it received another
command. If it received a left or right command, it would
turn a predetermined amount and then stop. If it any point
the robot’s range-finder read an object in the forklift, the
robot would stop. It would then raise the forklift to put
the object in its hopper and then lower the forklift. Finally,
it would pause for two seconds, allowing the camera code
to take another picture before it flushed its input buffer and
awaited new commands.

In addition, due to the simpleness of the command system,
and the difficultly of getting the camera to do what we wanted,
we decided to implement a manual control mode where the
operator could press keys and the robot would operate in
response to those key presses. This was known as manual
mode and simply allowed the operator to steer the robot in-
stead of the code. There was no change on the robot’s end in
manual mode, the commands seemed to be coming from the
same place.

Due to the code from [2] that we ended up working from,
we were a little limited in some of the features we were able
to implement. For example, while we had originally thought
it might be nice to allow the robot to respond to different
colors, it soon became obvious that it would be infeasible to
calibrate to multiple colors, just due to the way the code was
setup. However, for the same reason it was also easy to allow
us to pick any color as the color that we were calibrated too.

Integration Problems
As mentioned before, the range-finder for the final version
was moved off of the vestigial second arm, and onto the
remaining right arm. It was attached more securely, and
cushioned with pieces of foam. During testing, we noticed
that some highly reflective environments such as linoleum
caused the sensor to report false-positives. This was reme-
died by placing another piece of foam on its end at the other
side of the forklift across from the range-finder. This stopped
the reflectiveness of the floor from interfering with the oper-
ation of the range-finder.

Originally we attempted to use a small AA battery to 5v con-
verter that we had purchased to supply 5v power to the Ar-
duino. However, this converter ran through batteries very
quickly and produced variances in voltage that adversely af-
fected the camera. We remedied this by replacing the 5v
converter with a 9v battery and feeding the power in through
the RAW port USB hub.

One of the major problems we had with the robot from day
one, was the problem of it ”flipping out.” Flipping-out was
characterized by the robot running one or two of its motors
and moving its servos up and down anytime it was powered
on. We originally thought this wasn’t a big issue, just an an-

noying one. However, we soon discovered that the flip-outs
were causing the arm to become unaligned with its correct
location relative to the ground. Though we inquired about
using a relay or manual switch to prevent the flip-out occur-
rences we never implemented these solutions. In the end we
solved the problem by adding foam to the arm to prevent it
from moving below a certain minimum height. We believe
that even if we prevented the robot from flipping-out the arm
is still slightly too heavy and that this is causing the arm to
sag over time.

Finally, the largest integration problem we faced was that of
the camera. The camera had a lot of problems and was gen-
erally unpleasant to use. The biggest issues for us with the
camera were those relating to the speed of the picture taking
and maintaining a sync with the camera. The speed problem
was two-fold. First, the camera was running at too low a bau-
drate. Second, the camera refused to take any RAW photos
at all. The only format we were able to use was JPEG, which
meant longer transfer times as the photos had more meta-
data, checksums, and compression, as well as JPEG artifacts
in the image itself. We tried for a long time to get the camera
to use a higher baudrate than the standard 9600bps. Eventu-
ally we discovered that the problem was that the XBee’s had
to be set to a higher baudrate as well. However, even after
setting the XBee’s to 115200bps, the camera still wouldn’t
respond. Despite our best efforts, we were unable to get the
camera to respond to a baudrate of 115200bps, even though
this was listed as a supported rate in the camera’s documen-
tation. We eventually settled on 57600bps as the highest bau-
drate that the camera would respond to. This allowed us to
achieve an average photo capture and transfer time of about
1.6 to 2.0 seconds, down from 8-10 seconds.

Though we would have preferred to take pictures in RAW
format, we were unable to get the camera to do so. We read
the manual, and searched the internet for hours, but it ap-
pears that no one has gotten this functionality to work. No
matter what, whenever we issued a command to take a RAW
photo, the camera would just stop responding. It would have
to be power-cycled before it would respond to commands
again.

Speaking of power cycling, the last issue we had with the
camera was that of maintaining sync. When the camera is
first powered on, we have to issue a sync command to the
camera up to 60 times until the camera figures out the bau-
drate we are attempting to communicate at. The problem is
that sometimes the camera will never respond to these sync
requests until its power is cycled. The more frustrating prob-
lem is that sometimes the camera will randomly decide that
it no longer wants to respond to commands in general and
we are forced to re-sync with it. Even then, it will some-
times never respond to the sync and we will be forced to
cycle its power. Despite our best efforts, we were never able
to figure out this cause of this behavior, and our robot suf-
fered greatly for it. Without a consistently working camera,
the autonomous mode of our robot is nearly useless.

FUTURE WORK

5



Although our project met our original design goals, there is
certainly room for improvement if work were to continue.
The final version of the robot is very object and environment
dependent. Accounting for these variables simply made the
project too complicated in the time allotted, and a simplis-
tic design was used to bypass these issues. However, given
more time and the knowledge learned from the first two iter-
ations of the project, the robot could be redesigned to address
these issues. It could also be redesigned in order to fulfill our
optional design goals and improve upon construction.

In order to make the robot less environment dependent, it
would require redesigns in the following areas: movement,
the body, and the arm. For movement, the current motors
would need to be replaced with more powerful motors. This
would allow the wheels to overcome ridges in the floor. The
trackball, which had a habit of getting stuck in rugs or ridged
carpeting, would need to be replaced with a sturdier trackball
or a small wheel. The body would need to be elevated to
account for these changes, and the arm would need to be
positioned at a higher elevation from the floor.

Making these changes would break the current ”skim the
floor” technique that the robot uses to pick up ping-pong
balls. However, the arm would need to be redesigned if it
were to become less object dependent. In place of the cur-
rent ball-catcher, two arms could be designed to pick-up a
wider variety of objects. The design would be entirely de-
pendent on the variety of objects, but they could be elevated
higher from the floor.

Changes to the image processing would also go a long way
towards improving the accuracy/ object dependency of the
robot. In addition to replacing the camera with a faster, less
buggy alternative, additional image processing techniques
could be implemented. Blob detection and image segmenta-
tion could be used to calibrate according to specific region-
bounds instead of simply relying on color, which would help
in identifying a wider variety of objects more accurately.
Kalman filters would also help to reduce noise and inaccu-
racies.

Lastly, the optional design goal could also be met, and the
construction could be improved. Implementing the design
goal could be as simple as storing a counter for each suc-
cessful pickup, and an infrared sensor could be used to iden-
tify the nearest human. Construction could take advantage
of 3D printing for the arm design, and the hopper and mo-
tors could be screwed to the rest of the build, similar to the
current servo, arm, and trackball.

REFERENCES
1. Barrel Collector.

http://www.philohome.com/picker/picker.htm.

2. C# Camera Code. http:
//www.codeproject.com/KB/recipes/C328R.aspx.

3. Garbage Collector. http://roboticdnt4qut2.wordpress.
com/2009/03/05/trash-collector-robot-tcr2009/.

4. Golf Ball Collector. http://www.belrobotics.com/robot/
mower/products_ballpicker.html.

5. Red/Blue Ball Collector.
http://www.youtube.com/watch?v=VRMF_THNwnI.

6. Tenis Ball Collector. http://www.seattlerobotics.org/
encoder/aug99/ballbot.html.

6

http://www.philohome.com/picker/picker.htm
http://www.codeproject.com/KB/recipes/C328R.aspx
http://www.codeproject.com/KB/recipes/C328R.aspx
http://roboticdnt4qut2.wordpress.com/2009/03/05/trash-collector-robot-tcr2009/
http://roboticdnt4qut2.wordpress.com/2009/03/05/trash-collector-robot-tcr2009/
http://www.belrobotics.com/robot/mower/products_ballpicker.html
http://www.belrobotics.com/robot/mower/products_ballpicker.html
http://www.youtube.com/watch?v=VRMF_THNwnI
http://www.seattlerobotics.org/encoder/aug99/ballbot.html
http://www.seattlerobotics.org/encoder/aug99/ballbot.html

	INTRODUCTION
	Overview
	Project Description

	RELATED WORK
	OVERALL DESIGN
	Prototype
	Final Design
	Hardware
	Software

	Integration Problems

	FUTURE WORK
	REFERENCES 

